EcoWater report

Report from the 3rd targeted event - Policy links

Authors: IVL, OU, Case study partners Funded by: Collaborative Research Project of the 7th Framework Programme Report number: C 96 Edition: Only available as PDF for individual printing

© IVL Swedish Environmental Research Institute 2015 IVL Swedish Environmental Research Institute Ltd., P.O Box 210 60, S-100 31 Stockholm, Sweden Phone: +46-8-598 563 00 Fax: +46-8-598 563 90 www.ivl.se

This report has been reviewed and approved in accordance with IVL's audited and approved management system.

This report is a deliverable or other report from the EU project EcoWater.

At project closure it is was also published in IVL's C-series, available from the IVL web-site.

The EcoWater project was conducted by an international consortium coordinated by NTUA (National Technical University of Athens). IVL participated in the R & D work, in addition to leading one of the industrial case studies (Volvo Trucks), represented by Volvo Technology.

EcoWater ran 2011-2014. The project is presented in more detail on http://environ.chemeng.ntua.gr/ecoWater/

The project website holds a complete repository of all public deliverables from the EcoWater project.

Persons from IVL involved in EcoWater were:

Åsa Nilsson Sara Skenhall Magnus Klingspor Tomas Rydberg Uwe Fortkamp Felipe Oliveira Lina Danielsson Elisabeth Hallberg

Contact person: Åsa Nilsson asa.nilsson@ivl.se

For Deliverables, please see additional information on this specific report on the subsequent Document Information page.

Meso-level eco-efficiency indicators to assess technologies and their uptake in water use sectors

Collaborative project, Grant Agreement No: 282882

Deliverable 6.5

Report from the 3rd targeted event - Policy links

Roundtable on policy development towards increased eco-efficiency and industrial symbiosis

10th December 2014, "Bouche à Oreille", Brussels

December 2014

DOCUMENT INFORMATION

Project	
Project acronym:	EcoWater
Project full title:	Meso-level eco-efficiency indicators to assess technologies and their uptake in water use sectors
Grant agreement no .:	282882
Funding scheme:	Collaborative Project
Project start date:	01/11/2011
Project duration:	38 months
Call topic:	ENV.2011.3.1.9-2: Development of eco-efficiency meso-level indicators for technology assessment
Project web-site:	http://environ.chemeng.ntua.gr/ecowater
Document	
Deliverable number:	6.5
Deliverable title:	Report from the 3 rd targeted event - Policy links
Due date of deliverable:	31/5/2014
Actual submission date:	22/12/2014
Editor(s):	Sara Skenhall, Åsa Nilsson
Author(s):	Sara Skenhall, Åsa Nilsson, Les Levidow
Reviewer(s):	Dionysis Assimacopoulos
Work Package no .:	6
Work Package title:	Dissemination, communication and science-policy links
Work Package Leader:	Deltares
Dissemination level:	Public
Version:	1.0
Draft/Final:	Final
No of pages (including cover):	61
Keywords:	Research Policy implications

Contents

1	Eve	ent Agenda	4
2	Eve	ent Minutes	5
	2.1	Welcome	5
	2.2	Session 1 - Experiences and Challenges	6
		2.1 EcoWater: systemic eco-efficiency assessment towards innova take (Dionysis Assimacopoulos)	
	2.2.	2.2 Experiences and Challenges in Systemic Eco-efficiency Assessment	t.6
	2	 2.2.2.1 Agricultural Sector (Mladen Todorovic; CIHEAM-IAMB) 2.2.2.2 Urban Sector (Christoph Hugi; FHNW) 2.2.2.3 Industrial Sector (Palle Lindgaard-Jørgensen; DHI) Session 2 - Policy Implications of EcoWater Results 	7 7
	2.4	Closing	. 12
Ar	nex I:	I: List of participants	. 13
Ar	nex II	II: Meeting presentations	. 15
		Vater: systemic eco-efficiency assessment towards innovation upt lysis Assimacopoulos)	
		riences and Challenges in Systemic Eco-efficiency Assessment - Agricult or (Mladen Todorovic)	
		riences and Challenges in Systemic Eco-efficiency Assessment - Ur or (Christoph Hugi)	
		riences and Challenges in Systemic Eco-efficiency Assessment - Indus or (Palle Lindgaard-Jørgensen)	
	Water	r use in the EU across different sectors (Tomas Rydberg)	. 61

1 Event Agenda

09:30	Registration - Coffee	Åsa Nilsson and Sara Skenhall
10:00	Welcome	Michiel Blind Luisa Prista Dionysis Assimacopoulos
Sessio	on 1: Experiences and Challenges	Chair: Michiel Blind
10:10	EcoWater: systemic eco-efficiency assessment towards innovation uptake	Dionysis Assimacopoulos
10:30	Experiences and Challenges in Systemic Eco-efficiency Assessment: - Agricultural Sector - Urban Sector - Industrial Sector	Mladen Todorovic Christoph Hugi Palle Lindgaard-Jørgensen
Sessic Result	on 2: Policy Implications of EcoWater s	Moderator: Tomas Rydberg
11:45	Roundtable discussion on eco-efficient technology options and scenarios for water use systems and their policy implications	Panel: Maria Giovanna Zamburlini, Robbert Droop, Enrique Playán
12:50	Conclusions	Dionysis Assimacopoulos
13:00	Lunch - End of Event	

2 Event Minutes

2.1 Welcome

Michiel Blind (DELTARES) opened the meeting with a welcome to all participants and then gave the floor to Dr. Luisa Prista, head of Eco-Innovation unit at DG RTDI.

Dr. Prista spoke about the transition from a sectorial research focus into today's broader research approach, looking at impacts also on a societal level. She stressed that sectors need to be linked together and that DG RTDI has started this work by promoting systemic eco-innovation. In the future, the work of DG RTDI will become even more systemic and cross-sectorial. Dr. Prista pointed out that this thinking is already applied in the EcoWater project, where a shift is made from environmental technologies to eco-innovations. Technology projects are very useful and can indeed support and design future policies.

Three DG RTDI priorities for the future were mentioned; to set the orientation of research, to look at what the best investments of research are and to identify what research funds can be used. Circular economy will be taken into account and there should be a clear link with demonstration projects.

Dr. Prista pointed out to the audience that in Horizon 2020, Water will no longer be its own focus area but it will be a relevant part of another focus area (e.g. Industries and economy), and there may also be a separate call on Water. Furthermore Dr. Prista spoke of a call for ideas for large scale demonstration projects that will be launched by RTDI before Christmas. She encouraged everyone to participate with ideas on partnerships for demonstration projects.

Dr. Prista's concluding remark was that the present event, bringing people together to discuss, is a good approach for sharing results and experiences.

Professor Dionysis Assimacopoulos (NTUA), the co-ordinator of EcoWater, thanked Luisa Prista and also gave a warm welcome to all participants.

2.2 Session 1 - Experiences and Challenges

2.2.1 EcoWater: systemic eco-efficiency assessment towards innovation uptake (Dionysis Assimacopoulos)

Presentation slides are included in Annex II.

Questions:

Dr. Prista enquired about the exceptionally high values of eco-efficiency for the industrial Volvo case (CS#8).

Prof. Assimacopoulos explained that for the industrial case studies it is not relevant to compare across cases due to the different products in the systems. High value products will result in high baseline eco-efficiency to be compared with the results on technology eco-efficiency assessments for that particular case study.

2.2.2 Experiences and Challenges in Systemic Eco-efficiency Assessment

2.2.2.1 Agricultural Sector (Mladen Todorovic; CIHEAM-IAMB)

Presentation slides are included in Annex II.

No questions were posed.

2.2.2.2 Urban Sector (Christoph Hugi; FHNW)

Presentation slides are included in Annex II.

Questions:

Michiel Blind: There is new legislation for micro pollutants in Switzerland. Would it have been different if they used EcoWater approach before introducing that?

Christoph Hugi: The legislation is a precautionary measure and is not based on a full environmental assessment. For example, the environmental footprint of activated carbon which will be used to meet the new requirements is rather high. The legislator should be aware of the other effects and trade-offs.

2.2.2.3 Industrial Sector (Palle Lindgaard-Jørgensen; DHI)

Presentation slides are included in Annex II.

Questions:

Durk Krol (WssTP): How does the eco-efficiency indicator combine the economic and environmental impacts? We have to go behind the numbers and see, what is the reason for change. For uptake it is necessary to establish economic viability. What do you mean in your models by this?

Palle Lindgaard-Jørgensen: We should not look at the numbers as stand-alone. They give an indication and open the interest for knowing more about the details behind the results. Details are embedded in the tools. They are included in the baseline data and can be studied further by using the tools developed in the project. The business case depends partly on the return on investment (ROI). Technologies enable a company to comply with [regulatory] standards, but that assumption is already in the baseline in the models. The important thing is that a user can compare different technological alternatives, to find out which one is more eco-efficient.

2.3 Session 2 - Policy Implications of EcoWater Results

Presentation slides are included in Annex II.

Moderator: Tomas Rydberg (IVL)

Panel: Maria Giovanna Zamburlini (CEFIC), Enrique Playan (CSIC), Robbert Droop (Netherlands Ministry of Infrastructure and the Environment)

Moderator Tomas Rydberg showed a slide summarizing water use in the EU across different sectors, to show scarcity and highlight inefficiencies.

Tomas Rydberg (moderator): Question to panel - what do you see as the main challenges in the short and long term?

Maria Giovanna Zamburlini: The industrial sector has to take into account the difference between water use and water consumption.

E4Water project is testing already existing technologies for preparing process water. The main challenge is how to make innovations happen (through investment), return on investment of water technologies can be short when compared to other types of investment. Water innovations are capital intensive; there is a global and competitive market. It is difficult to find financing for long-term investment and access to other sources like joint venture capital or capital assets. Investment and resources for investment are the biggest issue! ¹

Palle Lindgaard-Jørgensen: With the EcoWater approach one can use a systems perspective to find the largest benefit instead of looking only within one's own process or plant.

Palle Lindgaard-Jørgensen: Some industries have realised that they need to look beyond their own fences. Can you confirm this from the chemical industry?

Maria Giovanna Zamburlini: Yes, more integration is happening, e.g. Dow Chemical is looking at integration of urban waste streams to agriculture.

Robbert Droop: First a step back - the industrialised world is using resources above the capacity, ca 3 planets and increasing. We have to initiate an ambitious increase in resource efficiency. The world is changing and more want the same. Projects like

¹ Mention was made of a report by Business Europe, *Expectations from an EU Investment Plan*: <u>http://www.businesseurope.eu/content/default.asp?PageID=568&DocID=33551</u>

EcoWater that try to identify potentials for resource efficiency are good, but only look at the specific sector. Policy makers will have to look further, for example on dietary changes and effects on societal level.

Tomas Rydberg (moderator): Are investments a challenge for society?

Robbert Droop: Water utilities are paid for by taxes. Incentives to improve technologies are small. There is a barrier in the institutional arrangement: Who will take leadership. There is also an institutional barrier to change, e.a. to significant improvement in innovation.

Enrique Playán: I was in the Expert Advisory Board of EcoWater. The project has produced interesting results. I am ready to see the knowledge incorporated into the ideas of decision makers. It will be interesting to see how the individual sectors can integrate into systemic innovation. How do different trade-offs in the sectors integrate between each other?

(Commenting on slide showing Water use in the EU) Water for the Environment (e.g. environmental flows) should be explicitly shown in the picture presented, as the urban sector is the largest water user. There is a need to integrate the environmental water use into the policy cycle, and look at the transfer of water between economic sectors. A project in Chile reuses wastewater, raising issues of how to allocate costs. Apparently there is not the same focus in Europe, and international cooperation is necessary to view it differently. Desalination of sea water is not perceived as cost efficient in Europe, but is so in Chile's mining industry. The water users' perspectives are well incorporated in the EcoWater project, which also tries to integrate the social perspective. The challenge is to draw more connections between the different sectors.

Tomas Rydberg (moderator): EcoWater has a meso-level approach; to what extent does the European policy system take this into account? Can it promote or prevent the eco-innovation?

Maria Giovanna Zamburlini: Under the Industrial Emissions Directive, the emission limit values (ELV) are decided locally, based on European regulation, BREF and BAT documents. BREF for wastewater is based on concentrations (rather than total load), which is not productive and bad for recycling and closed loop operations.

Concerning the Waste Framework Directive: End-of-waste status is a challenge because it is generally established at the EU level, but sometimes also at the local level if there is no EU definition of a particular waste. There are different decisions in different countries on what is considered waste, causing difficulties in waste management and policy; wastewater reuse is a regulatory gap. CEFIC argues that standards should be set only for external reuse.

Tomas Rydberg (moderator): Is there an obstacle for reuse in the EU? (directed to Enrique Playán)

Enrique Playán: The problem with reuse is when it's taken directly (not going back to river). Drinking water from grey water can be done technically. But when they want to use it for urban supply, they still need to first inject in a reservoir. This is not efficient, and hindered by regulation, so we need a progress of policy.

This agrees with the concentration issue discussed by Maria Giovanna Zamburlini, and that this issue is disruptive for progress. We cannot base quality standards on concentration. In the US it is based on the Total Maximum Daily Load [TMDL under U.S. Clean Water Act]. The concentration can be misleading. Innovative technologies

that result in reduced water use may result in higher concentrations but lower total loads; hence such technologies are not attractive.

There is need to do something, before water becomes so economically scarce that we use it in ways contrary to user perception, e.g. like making drinking water from grey water.

Dionysis Assimacopoulos: Water is part of our life. EcoWater has shown that water is also part of the economy (elaborating on the textile case; less water and less environmentally expensive technology brings industry back to the front of the market). We should not look at one side only, just the environment, we need to include both economic costs and benefits and the environment.

Comments and questions from the audience

Frederic Clarens (Fundacio CTM Centre Tecnologic): I congratulate the project and see the results and method as a powerful tool. Engagement of citizens is the key for progress, Politics takes time. The project provides good tools to communicate and details are within to study further. There is need to broaden knowledge to people about water availability and scarcity, and need to create awareness! Municipalities can be the way to get information out. This project has provided a good tool to communicate and also to integrate better between research and industry.

Christos Karavitis (Agricultural University of Athens): I am happy for the project, which has both a systemic and *systematic* approach, with a step by step approach. The absence of water cannot easily be transferred into water rights, which is a challenge for policy. We need to go further towards circular economy, and also make existing technologies more available and implementable.

Panos Balabanis (EC DG RTDI): Three policy related scenarios were assessed. If we look at combinations of scenarios, will the results be the same? Can we apply the results if we go beyond the specific barriers?

Nikos Pantalos (EC ENTR B3): Industries are interested in clean tech and will be interested in these results since they show that cost-savings are also possible. How is it possible to reach industry and SME's with results, and make them aware of benefits from eco-innovation and clean tech? SMEs don't know how to apply and exploit these kinds of results. Is there room to develop a support service for SMEs to help them be interactive and aware of the tools? Some work needs to be done with industrial associations. Other technologies could be included in the assessments.

The question is, how to better use results by SMEs by developing services to support them?

Dionysis Assimacopoulos: Biella gives one answer. The companies are SMEs, one does something different, but others cannot follow due to investments. Can we develop associations for different SMEs to benefit more? In the urban sector, most technologies were for resource efficiency in water consumption; the net economic output (NEO) for suppliers went down. Is the solution to increase the price of water? The whole system needs to be looked at through a different approach.

Tomas Rydberg (moderator) (directed to Robbert Droop): Although there is conformity across the common market, on the other hand water scarcity is on a local level. You are somewhere in between, at the national level (middle level). How do you balance between the international and local levels on a national level, between reasonably simple EU legislation and implementation at the local level?

Robert Droop: It's a complex question. The general obstacle is the lack of internalisation of environmental costs, or the difference in internalisation between countries. It distorts market relations. Obstacles in policy: BAT is generally available technologies with a minimum performance standard, so frontrunners in eco-innovation do not need not go above the BAT, implying that going beyond BAT may even be an economic disadvantage. There's a need for a new mechanism for measures on EU level to promote frontrunners, favouring and incentivising introduction of ambitious environmental performance in technology. Another aspect is information and transparency, where we need an enormous step to help towards a circular economy, to close the loop within and across sectors.

Palle Lindgaard-Jørgensen: What is the water utilities' role? Who can play a role in bridging so that water utilities are not losers in optimised resource-efficient systems? Can they be winners in the long run? Who can organise it?

Robbert Droop: Not an easy question. Return on investment is the important thing, not whether they are selling more or less water. Water utilities can have an important role in water resources (these are often a public activity) if they are being valued for their societal function.

Maria Giovanna Zamburlini: We try to make companies more aware about their responsibilities, both on environmental and economic benefits. One must look at the local level.

Enrique Playán: The CAP is one of the most long-term conservative policies. But now we have funds to be used to create local networks for innovation. How to make a link between companies and help build innovation? How to build an agricultural extension system 2.0? Agricultural production with low chemical input and water efficiency are two important aspects.

Tomas Rydberg (moderator) invited final brief comments.

Maria Giovanna Zamburlini: A systematic view must look at innovation, trade-offs, winners and losers.

Robbert Droop: Research should move towards new functions in society, not on specific technologies, but with an integral and multi-stakeholder approach. Where is the leadership? How to develop such policies so that the leadership for innovation is growing in itself? We need public authorities to create the right conditions for actors to take that leadership.

Enrique Playán: We (researchers and EC) now have a change in job description. Policy on growth and jobs must be changed to serve society more directly.

2.4 Closing

The Project coordinator Prof. Assimacopoulos closed the meeting, and thanked everyone for participating in the meeting and discussions. The event ended with lunch at the venue.

Annex I: List of participants

Name	Organisation	Job role			
Asik, Anna-					
Natasa	DG RTDI	Research Programme Officer			
Assimacopoulos, Dionysis	NTUA	EcoWater Co-ordinator; Professor			
Balabanis, Panagiotis	DG RTDI	Deputy Head of Unit I2 Eco- Innovation			
Balzarini, Anna	MITA S.A.S.	EcoWater partner; EU Consultant			
Blind, Michiel	Deltares	EcoWater partner; Coordinator EuropeDesk			
Clarens, Frederic	Fundacio CTM Centre Tecnologic	Head of Industrial Ecology			
D' Ambrosio, Enrico	Regione Puglia Brussels Office	Officer			
de Robertis, Claudia	Apulia Region	Officer			
Droop, Robbert	Netherlands Ministry of Infrastructure and the Environment	Policy Coordinator			
Esteban, Germán	EC	Programme Officer			
Giannisi, Silvia	Veltha i.v.z.w.	President			
Hugi, Christoph	FHNW - University of Applied Sciences and Arts Northwestern Switzerland	EcoWater partner; Professor			
Karavitis, Christos	Department of Agricultural Engineering, Agricultural University of Athens	Ass. Professor			
Krol, Durk	WssTP	Director			
Levidow, Les	Open University	EcoWater partner; Senior Research Fellow			
Lindgaard- Jörgensen, Palle	DHI	EcoWater partner; Senior consultant.			
Maia, Rodrigo	UPORTO - FEUP	EcoWater partner; Associate Professor			
Mena-Abela, Carmen	EC/EASME	Head of B.2.1 H2020 Eco- innovation			
Nardella, Luigi	Consorzio per la Bonifica della Capitanata	Director Agronomic Sector			
Nilsson, Åsa	IVL - Swedish Environmental Research Institute	EcoWater partner; Environmental Researcher			
Pantalos, Nikos	ENTR B3	Policy Officer			
Playan, Enrique	van, Enrique CSIC Researc				
Prista, Luisa DG RTDI He		Head of Unit Eco-Innovation			
Ribarova, Irina	UACEG	EcoWater partner; Professor			
Riggio, Rosseau	RTDI	Project/Process Assistant			

Name	Organisation	Job role
Rydberg, Tomas	IVL Swedish Environmental Research Institute	EcoWater partner; Senior LCA expert
Servant, Isabelle	Aqua Publica Europea	Communications officer (Executive Director)
Skenhall, Sara	IVL Swedish Environmental Research Institute	EcoWater partner; Consultant
Slob, Adriaan	TNO	Senior researcher
Todorovic, Mladen	CIHEAM - Mediterranean Agronomic Institute of Bari	EcoWater partner; Senior Scientific Officer
Zamburlini, Maria Giovanna	Cefic	Environmental Policy Counsellor

Annex II: Meeting presentations

- 1. EcoWater: systemic eco-efficiency assessment towards innovation uptake (*Dionysis Assimacopoulos*)
- 2. Experiences and Challenges in Systemic Eco-efficiency Assessment Agricultural Sector (Mladen Todorovic)
- 3. Experiences and Challenges in Systemic Eco-efficiency Assessment Urban Sector (Christoph Hugi)
- 4. Experiences and Challenges in Systemic Eco-efficiency Assessment Industrial Sector (Palle Lindgaard-Jørgensen)
- 5. Water use in the EU across different sectors (*Tomas Rydberg*)

EcoWater: systemic eco-efficiency assessment towards innovation uptake (Dionysis Assimacopoulos)

EcoWater

Systemic Eco-efficiency Assessment Towards Innovation Uptake

Prof. Dionysis Assimacopoulos School of Chemical Engineering, National Technical University of Athens, Greece

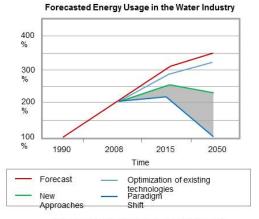
Brussels 10/12/2014

The EcoWater Project

- Meso-level Eco-efficiency Indicators to assess technologies and their uptake in water use sectors
- Collaborative Research Project supported by the 7th Framework Programme
 - Theme: ENV.2011.3.1.9-2 Development of eco-efficiency mesolevel indicators for technology assessment
 - > Duration: 1st November 2011 31st December 2014
- Total Budget: 3.04 M€
 - ➤ EC funding: 2.5 M€
- Ten partners
 6 Universities, 3 Research Institutes, 1 SME

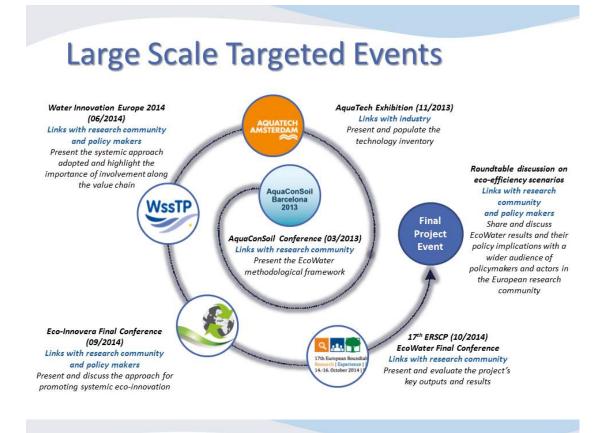
The EcoWater Consortium

- 1. National Technical University of Athens, GR
- 2. Centro Internazionale di Alti Studi Agronomici Mediterranei - Istituto Agronomico Mediterraneo di Bari, IT
- 3. Stichting Deltares, NL
- 4. University of Applied Sciences, Northwestern Switzerland, CH
- 5. Universidade do Porto, PT
- 6. University of Architecture, Civil Engineering and Geodesy, BG
- 7. The Open University, UK
- 8. DHI Danish Hydraulic Institute, DK
- 9. IVL Swedish Environmental Research Institute, SE
- 10. MITA SAS, IT


The Research Objectives

- Selection of eco-efficiency indicators, suitable for assessing the system-wide eco-efficiency
- A system-wide environmental and economic assessment of water-use systems
- Selection and testing of innovative technologies and practices for improving system-wide ecoefficiency of water-use systems
- Development and integration of assessment methods and tools into a coherent modeling environment

Water as a Common Denominator


- Water is an input to most production processes
- Water-use conveys an added value in products/services
- There is a significant potential for water saving
- There is a significant environmental impact and cost in making water suitable for different use purposes
- Uptake of water-related innovations remains regulatory-driven and existing standards offer limited incentives for further improvement

Source: UK Council for Science and Technology "Improving innovation in the water industry" 2009

Dissemination Activities

- A. Local Case Study Workshops
 - > Discuss data requirements (1st Year)
 - > Identify drivers and barriers for technology uptake (1st & 2nd Year)
 - > Present the key outputs and results of EcoWater (3rd Year)
- B. Large-scale Targeted Events
 - Present the methodology and results of the EcoWater
 - > Develop links with key research and policy initiatives
 - > Enhance the collaboration with stakeholder groups
- C. EcoWater Final Conference
 - > Present the key outputs and results
 - > Discuss their applicability
 - Identify next steps, in terms of policy, industrial development and research

The EcoWater Approach

Eco-efficiency: Defining & Measuring

- Simultaneous improvement of both economic & ecological efficiency
- With respect to cleaner production concept "it delivers products and processes that meet tomorrow's rather than yesterday's environmental expectations"

Van Berkel R., 2008, "Eco-efficiency: concepts & rationale"

Eco-efficiency metrics: Indicators to measure the most costeffective way of reducing environmental pressures / impacts

The Challenge

- Eco-Efficiency and Eco-innovation for water-use systems
- A systemic approach addressing both the physical and operational structure of the system
- A validated technology assessment framework recognizing
 - > System-wide impacts from multiple interventions
 - Heterogeneous actors with conflicting interests are involved

The Drivers

EU and Member States

- Towards a circular economy 2014; Value chain focus and waste reduction targets
- Building the Single Market for Green Products Facilitating better information on the > environmental performance of products and organisations - 2013
- Roadmap for a resource-efficient Europe 2011 P
- Sustainable Consumption and Production Action Plan 2008 ×
- × Sector-specific policies, directives and regulations (WFD, IPPC - BATS, ...)

Industry & SMEs

- International standards ISO 14045/2012
- Eco-labelling of products & Eco-design ×
- New business opportunities Market for environmental technologies, innovations & × secondary by-products (e.g. phosphorus)
- New financing instruments to facilitate investment >

Society

- New consumption drivers & preferences P
- Behavioural change
- Increased concern over the footprint of products (Pilot phase for Product Environmental × Footprint at EU level)

Efficiency gains

The Principles

Reduce

- > Material intensity of goods & services production with fewer inputs
- > Energy intensity of goods and services production with less energy
- > Dispersion of any toxic substances production with less harmful waste

Recycle

> Enhance the recyclability of materials make recyclable products

Reuse

- Maximise
 - Sustainable use of renewable resources -Make products from inputs that won't run out
 - > Durability of products Make products that last
 - > The service intensity of goods & services meet demand with services and not with products

Source: World Business Council for Sustainable Development

Material Reduce Substitute alternative use of materials auxiliarie Production Reduce Process Reduce use of efficiencies batch sizes auxiliaries Distribution Tariffs, Localise subsidies production and quotas Use Reduced Best

Smart

functions in use auxiliaries Disposal Incinerate rather than Recycle materials landfill

impact

practice

Reduction in flow

support and education

Durability in place of fashion

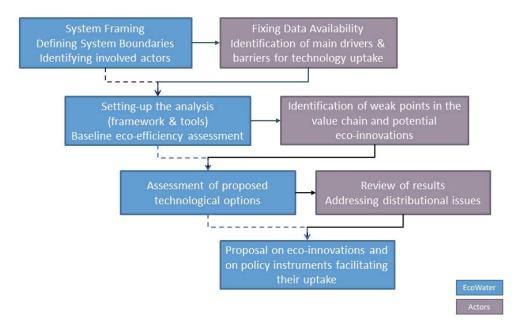
New business Models

Second-hand Purchasing

Eco-taxation


A Systemic Approach

Water System Mapping

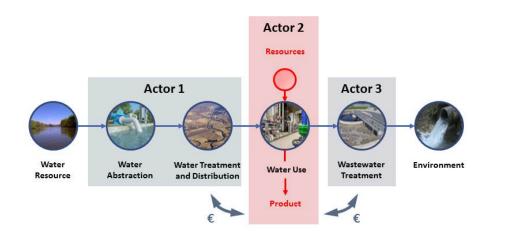

- A. System framing System boundaries
 - Input & output flows
- B. System's governance mapping Key players & Interrelations
- Selection of Eco-efficiency Indicators
 - A. Environmental impact assessment
 - B Economic performance assessment
- Identification of Opportunities for Upgrading the Value Chain
 - A. Environmentally/economically weak stages/actors
 - B. Potential for innovation & value creation

Technology Scenarios

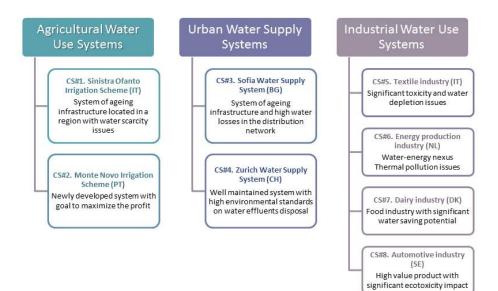
- A. Reducing environmental impacts and increasing value added
- B. Distributional effects (winners & losers) Technology uptake (effectiveness of instruments & incentives) C.

The Involvement of Actors in the CS **Development Process**

Implementing Eco-efficiency Analysis


The Water-Use System

- Stages (transformation technologies) & Resource flows (water, energy, materials)
 - 1. Water supply/value chain
 - 2. Production chain



Socio-dynamics & Eco-innovation Uptake

- Costs, services, products and added value
- Conflicting interests among heterogeneous actors

Eight demonstrative water-use systems

Environmental "Hotspots"

Agricultural Water Use Systems

- eutrophication due to fertilizers use and climate change due to fuel consumption

Urban Water Supply Systems

- Main hotspot is domestic water use, which leads to freshwater depletion
- Each system has its additional hotspots (sludge transportation for Sofia / micropollutants emissions for Zurich)

Industrial Water Use Systems

- Main environmental hotspot: Ecotoxicity (Textiles), Eutrophication (Dairy), Thermal Pollution (Energy), Ecotoxicity and Abiotic Resource Depletion

Baseline Eco-efficiency Metrics

Indicators	Agricu	Agricultural		Urban		Industrial		
Indicators	CS#1	CS#2	CS#3	CS#4	CS#5	CS#6	CS#7	CS#8
Climate Change (€/tCO _{2,eq})	1081	186	94	373	1351	78.8	30.1	44000
Stratospheric Ozone Depletion ($\mathcal{E}/kgCFC-11_{eq}$)	NR*	NR	>106	>106	NR	NR	NR	>106
Eutrophication (€/kgPO4 ⁻³ ,eq)	109	15.4	41.7	4.9	1025	NR	0.99	42000
Acidification (€/kgSO _{2⁻,eq})	82.6	21.8	4.4	215	366	104.5	3.1	15000
Human Toxicity (€/kg1,4-DB _{,eq})	19.9	1.7	1.1	4.5	6.8	38.8	28.5	2000
Aquatic Ecotoxicity (€/kg1,4-DB _{,eq})	74.5	10.9	13.3	15.6	0.8	10635	737.3	1800
Terrestrial Ecotoxicity (€/kg1,4-DB _{,eq})	3866	106	513	6005	9.5	2907	630	>106
Photochemical Ozone Formation (€/kgC ₂ H _{4,eq})	8417	519	111	8822	6959	808	3272	>106
Respiratory Inorganics (€/kgPM _{10,eq})	3007	NR	22.5	1257	NR	21305	NR	NR
Abiotic Resource Depletion (€/kgSb, _{eq})	NR	NR	NR	NR	NR	NR	NR	28660
Fossil Fuels Depletion (€/MJ)	4.9	0.01	0.01	0.03	NR	0.003	NR	NR
Freshwater Depletion (€/m³)	7.0	0.6	1.1	31.6	122	6.1	203	17400

*NR: Not relevant to the Case Study

Innovative Technologies

- Information for more than 50 different innovative technologies that potentially could improve the ecoefficiency has been retrieved
 - > Best Available Techniques Reference Documents (BREFs)
 - > Literature review
- All technologies are included in the online technology inventory, with detailed data on their environmental and economic performance
- Selection of technologies to be assessed has been based on
 - A. Relevance
 - B. Identification of the hotspots of environmental impacts
 - C. Feedback from the local actors

Policy Scenarios

- Technologies have been classified in three classes according to the implementation objective
 - Resource Efficient technologies, focusing on water, energy or material savings
 - Pollution Preventing technologies, aiming to reduce the emissions to air, water and soil
 - Technologies enhancing Circular Economy, such as reuse, recycle or recovery
- Based on that classification, three alternative scenarios have been formulated for each Case Study, each one including all the relevant ecoefficient technological options

Innovative Technologies

(a) Water Supply & Waste Treatment Chain

Technologies	Stage	Resource Efficiency	Pollution Prevention	Circular Economy
Variable Speed Pumps		✓	~	
Pressure reduction turbines	Water	✓	✓	✓
Smart pumping	Abstraction and Distribution	1	✓	
Solar pumping		✓	✓	
Membrane distillation	Water Treatment		✓	
Micropollutants removal			✓	
Advanced phosphorus recovery	Wastewater		✓	1
Solar drying of sludge			✓	✓
Anaerobic pre-treatment of wastewater	Treatment		✓	
Advanced oxidation processes			~	
Membrane bioreactor			1	

Innovative Technologies

(b) Technologies in Production Chain

Sector	Resource Efficiency	Pollution Prevention	Circular Economy
Agricultural Water Use	Regulated deficit irrigation Drip & Sub-surface drip irrigation	Use of sludge Use of organic fertilizers	-
Urban Water Supply	Water saving appliances	Solar water heating Drain water heat recovery	Water reuse technologies
Textile Industry	Jet dyeing machines Automatic dye and Chemical dispensing systems	Use of natural dyes	-
Energy Production Industry		ly boilers ergy buffer	Expansion of the Heat Distribution Network Preheating potable water
Dairy Industry	Product and water recovery from CIP Cleaning and reuse of condensate	Advanced oxidation and UV	Cleaning and Reuse of Condensate
Automotive Industry	Silane-based meta Recycling of process	Recycling of process water and chemicals	

Potential for Environmental Improvement

Case Study	Resource		Pollution pr scena		Circular economy scenario		
	Water Use Energy Use		Water Use	Energy Use	Water Use	Energy Use	
CS1. Sinistra Ofanto (IT)	-6.3%	-5.9%	0%	-9%	-	÷	
CS2. Monte Novo (PT)	-8.7%	-8.3%	0%	-5%	-	2	
CS3. Sofia (BG)	-9.0%	-8.0%	-9%	-14%	0%	-1%	
CS4. Zurich (CH)	h (CH) -13% -6%		-1%	0%	-2%	0%	
CS5. Textiles (IT)	-52%	-15%	0%	-0.8%		=	
CS6. Amsterdam (NL)	-	-	-18%*	-11%	-30%*	+1%	
CS7. Dairy (DK)	-47%	240	-133%		-316%	-	
CS8. Automotive (SE)	-1.1%	-2.8%	-1.5%	+3.9%	-1.3%	+4.4%	

* Case Study #6: In Water Use column the Thermal Pollution Reduction in the receiving water body is shown

Distributional Issues

Smart pumping Organic

Drip irrigation

Net Economic Output change for the main involved actors

					1			ferti	lizers
	Resource efficiency scenario			Pollution prevention scenario			Circular economy scenario		
Case Study	Water Utility	Water User	WW Utility	Water Utility	Water User	WW Utility	Water Utility	Water User	WW Utility
CS1. Sinistra Ofanto (IT)	0%	-3.1%*	N/A	0%	+1.2%	N/A	125	-	-
CS2. Monte Novo (PT)	+6%	-7.5%	N/A	0%	+11%	N/A	-	-	-
CS3. Sofia (BG)	-21%**	+13%	-21%	-20%	+10%	-20%	+9%	0%	+9%
CS4. Zurich (CH)	-1%	+19%	-17%	0%	-2%	-48%	0%	-3%	0%
CS5. Textiles (IT)	0%	+11%*	0%	0%	-6.8%	+6.7%	1	-	-
CS6. Amsterdam (NL)	-	-	-	0%	+11%	0%***	0%	+9%	-11%
CS7. Dairy (DK)	-55%	+10%	-42%	-26%	+10%	-6%	-75%	+10%	-41%
CS8. Automotive (SE)	0%	+0.3%	-57%	-12%	+0.3%	-57%	-12%	+0.2%	0%

In CS#1 and CS#5 there is more than one water user. The worst economic performance is shown
 In Case Study #3, water utility and wastewater utility are managed by the same actor

*** In Case Study #6, the users of electricity and thermal energy are shown in the 3rd column instead of WW Utility

Policy Implications

Agricultural Water Use Systems

- Identical behavior in both Case Studies
- Pollution prevention scenarios could be more easily implemented since all actors have a positive net economic output
- On the contrary, farmers are losing money when implement water saving technologies

What policies are required to facilitate their uptake? Economic incentives to farmers?

Urban Water Supply Systems

- Similar behavior in both Case Studies, where domestic water users improve their economic performance in most cases
- Water utility and wastewater treatment units demonstrate economic losses in all scenarios, potentially incurring increases of the water/wastewater tariffs

Which policy instruments can counterbalance this effect?

 Pollution prevention scenario for Zurich is not economically favorable, since all actors have a negative economic performance. However, it will be implemented as a result of the new Swiss legislation on micropollutants removal

Can the strict environmental regulations be an effective driver for promoting ecoinnovative technologies?

Policy Implications

Industrial Water Use Systems

- In all 4 systems, the water user is the actor responsible for applying the majority of ecoinnovations
- Implementation could be fostered if technologies are included in the BREFs Are the eco-innovations proposed by EcoWater included in the corresponding BREFs? Is an update required?

Textile Industry

 High investments are required by the SMEs for the implementation of both scenarios; this is not a realistic option given the economic situation of the textile industry (Jet dyeing machines,, Automatic dye and Chemical dispensing systems, Use of natural dyes)

What policies are required to facilitate their uptake? Economic incentives to SMEs? Is the joint implementation of the scenarios a feasible option? How can it be promoted?

Energy Industry

• More than one resources is traded among the actors of the system (water, electricity, thermal energy, natural gas), making the corresponding tariffs an important parameter when addressing distributional issues

Policy Implications

Dairy Industry

- All scenarios improve environmental indicators
- The dairy industry always has profit from their implementation (Product and water recovery from CIP, Cleaning and reuse of condensate, Advanced oxidation and UV)
- However, all scenarios assume the replacement of fresh water intake, currently used for dairy processes, with water extracted from milk
 Do national food authorities accept that using water extracted from milk is safe for the consumers? Is there a precedent in the EU legislation?

Automotive Industry

• The industrial actor has marginal economic profit from the implementation of eco-innovative technologies (Silane-based metal surface treatment, Recycling of process water and chemicals)

What incentives are required to motivate an industry to invest in environmentally friendly technologies?

Wide Policy Implications

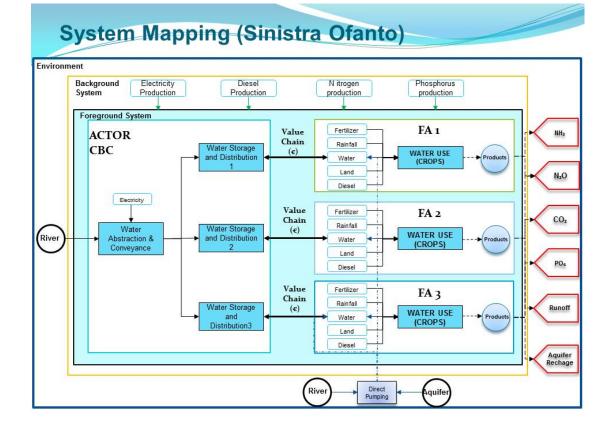
- For eco-innovations which offer greatest benefit, what are the main drivers and barriers?
- For adopting such eco-innovations, what policy changes would be helpful?
- For multi-stakeholder cooperation to identify optimal eco-innovations, what policy frameworks or changes would be helpful?
- What advantages does the adoption of a systemic approach offer?
- Which stages in the water value chains were the hotspots of environmental impacts and with the greatest potential for improvements?
- Which eco-innovations were proposed and for which technology scenarios?
- How was the environmental performance of a system affected by the implementation of technology scenarios?
- How was the economic performance of a system and its different actors affected by the implementation of technology scenarios?
- In the case that the assessment of technologies resulted in higher eco-efficiency, was this due to the economic or the environmental dimension mainly? Were there also win-win situations?

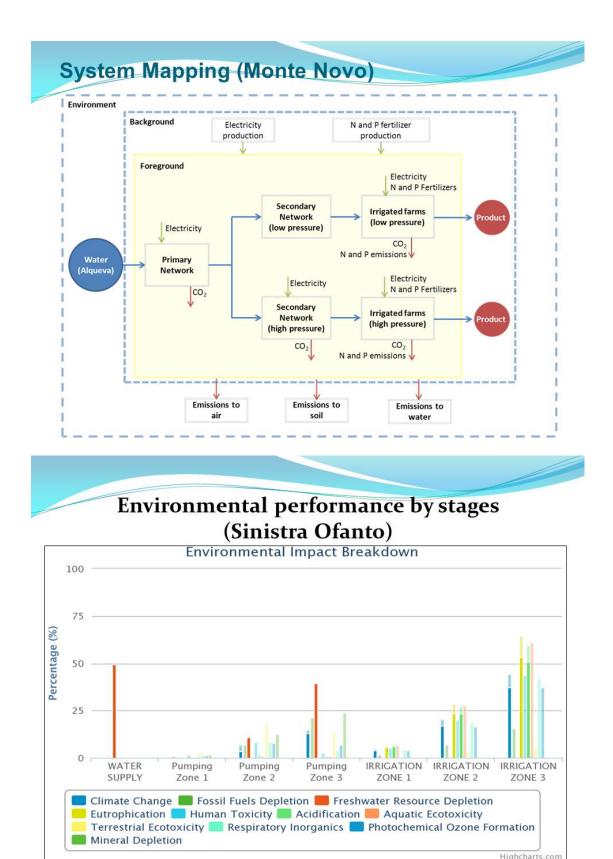
Thank you for your attention

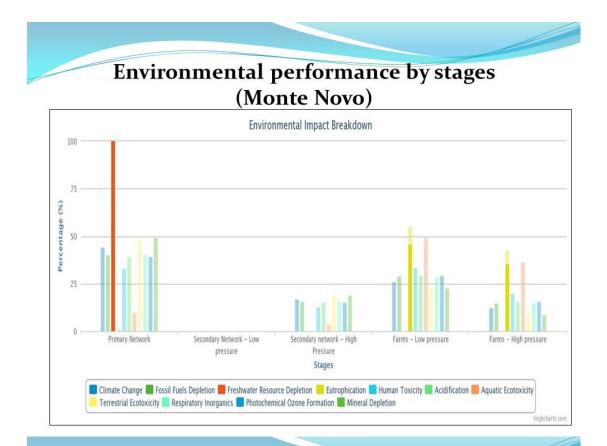
For more information, visit: <u>http://environ.chemeng.ntua.gr/ecowater/</u> (Project Site) <u>http://environ.chemeng.ntua.gr/ewtoolbox/</u> (EcoWater Toolbox) Experiences and Challenges in Systemic Eco-efficiency Assessment - Agricultural Sector (Mladen Todorovic)

Experiences and challenges in systemic eco-efficiency assessment

Agricultural Case Studies of Sinistra Ofanto and Monte Novo.


<u>Mladen Todorovic</u>¹, Rodrigo Maia², Cristina Silva², Andi Mehmeti¹ ³Mediterranean Agronomic Insitute of Bari (CIHEAM-IAMB) ²UPORTO- University of Porto, Faculty of Engineering.

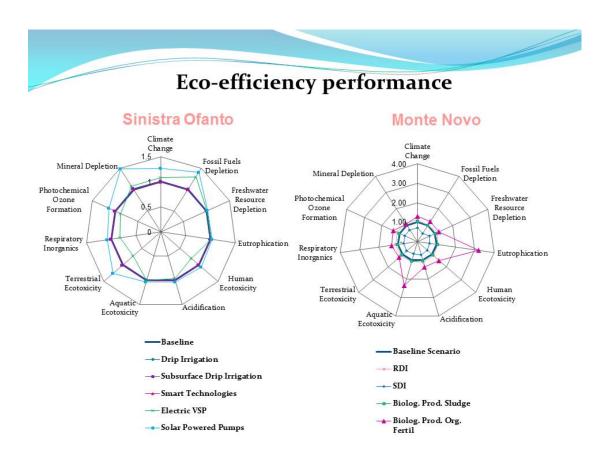

EcoWater Policy Event, 10th December 2014, Brussels

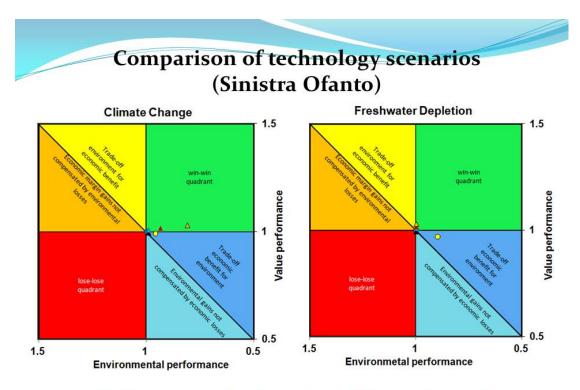

- Agricultural CS introduction
- Environmental performance per system stage
- Studied technologies and scenarios
- Indicators and comparison of technology scenarios
- Conclusions
- Recommendations

D6.5 Report from the 3rd targeted event - Policy links

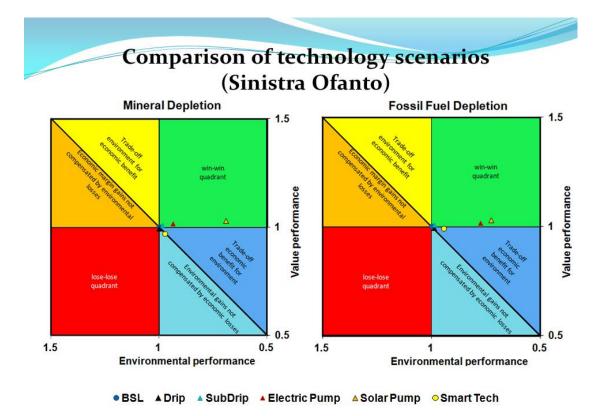
Most relevant Eco-Efficiency Indicators (environmental weakness)

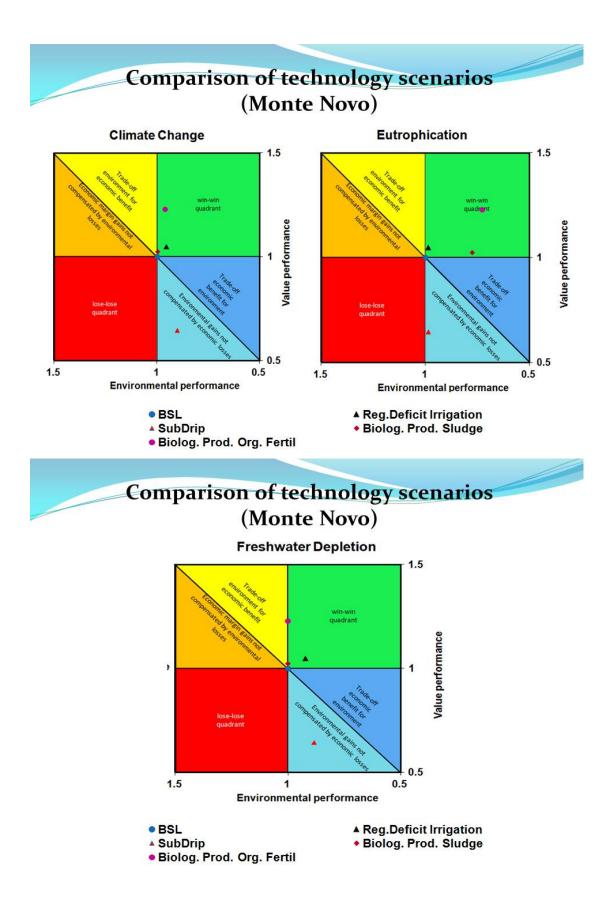
Sinistra Ofanto


- <u>Freshwater Resources Depletion</u> due to huge water supply and excessive pumping from aquifers;
- <u>Climate change impact</u> due to direct emissions from fertilizer and fuel consumption;
- <u>Eutrophication</u> of groundwater and surface water due to NO₃⁻ and PO₄³⁻ leaching.


Monte Novo

- <u>Freshwater resource depletion,</u> due to high amount of water abstracted for irrigation;
- Eutrophication, due to the use of fertilizers (N and P, foreground system);
 - <u>Aquatic eco-toxicity</u>, due to the high characterization factor of nitrogen production in the background processes


Scenarios and corresponding technologies


Scenarios	Technologies Sinistra Ofanto	Technologies Monte Novo		
Scenarios towards Resource Efficiency	 Drip & Sub-surface drip Irrigation Technology Smart Technologies for irrigation management 	 Regulated Deficit Irrigation (RDI) Sub-surface drip irrigation (SDI) 		
Scenarios towards Pollution Prevention	 Electric Pumps (On field) Solar Pumps (On field) 	Use of SludgeUse of Organic Fertilizer		
Scenarios other	• New water tariffs	• New energy tariffs		

●BSL ▲Drip ▲SubDrip ▲Electric Pump ▲Solar Pump ●Smart Tech

- Economic benefits can change from year to year due to water input (main physical production risk) and market fluctuations (out of control of local stakeholders).
- Cropping pattern and cultivation should be focused more on qualitative aspects (i.e organic products which has higher market price and lower environmental impact).
- Costs of production and of investments and market variability are among the most important factors influencing innovation and technological uptake.
- No real and exact data about the quantities of by-products for proper assessment of TVA.
- Access to resources and support services may affect significantly components of economic performance.
- The application of new PAC can "motivate" farmers to adopt measures which are more efficient in the use of water in order to decrease the costs and increase the economic return.

(Environmental Impacts)

- Environmental impacts change over time and space and depend on hydrological conditions (uncontrolled system, difficult to predict).
- Environmental impacts depend largely on cropping pattern, water availability and adopted management practices (water and fertilizer input).
- Farmer's behavior and capabilities affects substantially the component above.
- A composite set of meso-level EE indicators can help to understand and interpret complex agricultural water systems.
- Main environmental impacts are due to the background systems and the production of energy, fuel and agrochemicals.
- Four environmental impact indicators are particularly relevant: fresh water depletion, climate change, eutrophication, and fossil fuel depletion.
- Shifting to more clean technologies (e.g. smart irrigation technologies, electric/solar pumps, organic farming, sludge use) is a process which requires large societal, economic and political support.

Recommendations 1

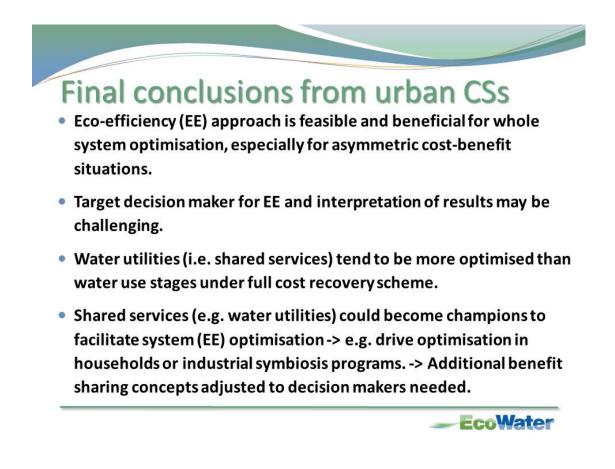
- Adoption of combination of different technologies should be a must requires a coordinated action and technical assistance to meet large scale water delivery issues and farm-specific situations.
- Promote the coordinated decision-making process based on stakeholder driven approach including all relevant actors (farmers and citizens, water user organizations, water authorities, policy and decision makers, investors, technology providers, etc.).
- Adoption of new policy instruments for a more equitable distribution of costs and benefits.
- Use of new measuring tools and models (like SEAT and EVAT with embedded life cycle approach) to generate, collect, and analyse data and compare scenarios of technology uptake within agricultural water systems.
- Benchmarking of "current situation" to identify weak stages and processes of the system and possible options for its enhancement including the quantification of the resource and cost saving options and the existence of eventual barriers for their implementation.

Recommendations 2

- Increase the flexibility for participations in commodity programs to respond to market signals and adopt environmentally sound production practices and systems, thereby increasing profitability and enhancing environmental quality in compliance with EU regulation.
- Create incentives for the farmers to adopt the best (environmentally friendly) management practices at farm level. Solution should be searched in water-energy saving technologies combined with organic types of fertilizers and adoption of zero-tillage where possible.
- Developing financial programs to improve access to capital for those willing to invest in eco-efficient practices. Securing sufficient access to capital is crucial for eco-innovations to grow in scope, especially for innovations with long development times.
- Design and promote the effective information and education programs on adoption of eco-efficient technological solutions at various scales. Sponsor demonstration activities, targeted workshops and roundtables to promote technology uptake.
- Use the knowledge systems and web platforms (as ECOWATER) to underpin the policy making process at the various levels of stakeholders and actors including regional environmental and water agencies, authorities and consultancy firms.

Thank you for your attention

Experiences and Challenges in Systemic Eco-efficiency Assessment -Urban Sector (Christoph Hugi)



Experiences and challenges in systemic eco-efficiency assessment

Urban Case Studies Sofia and Zurich

<u>Christoph Hugi¹</u>, Olga Steiger¹, Irina Ribarova², Peyo Stanchev² ¹University of Applied Sciences and Arts Northwestern Switzerzland ²University of Architecture, Civil Engineering and Geodesy, Sofia

EcoWater Policy Event, 10th December 2014, Brussels

- Overview urban case studies
- Objectives and baseline
- Results for urban case studies
- Conclusions

Overview urban case studies

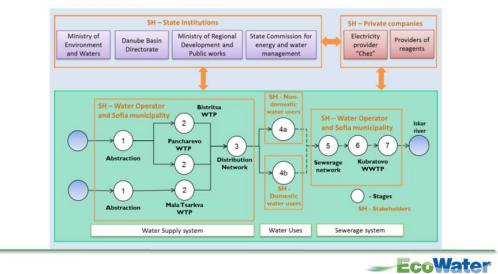
Urban case study Sofia, BG I

Annual Water abstracted206,2 Mio m³Total Value Added79 Mio €

Environmental characteristics

- Bigger freshwater intake due to high water losses in water distribution network
- Bigger freshwater intake due to inefficient water appliances
- Low energy efficiency

Economic characteristics


- Willingness to pay for water services
- Difficulties in estimation the TVA from nondomestic

Identified environmental weaknesses


- Freshwater Resource Depletion, due to water losses in the water distribution network and extensive amount of water used in households
- Climate change and fossil fuel depletion, due to sludge transportation
- Significant impact in most of the environmental categories, due to conventional energy production

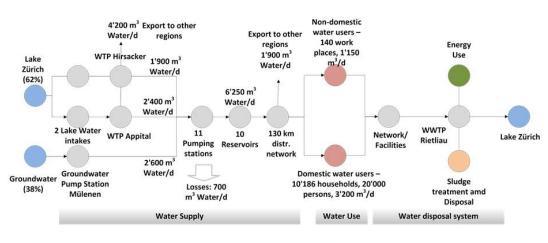
Urban case study Sofia, BG II

Water services and use chain

Urban case study in the Canton of Zurich, CH I

Environmental characteristics

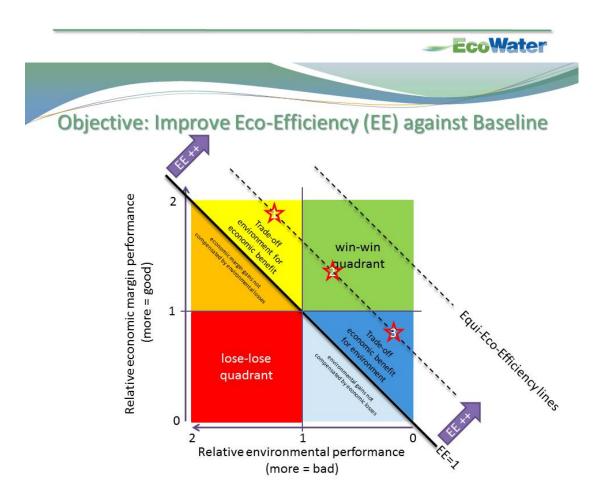
- Water supply sources in the Canton of Zurich: mainly groundwater and lakes, partly spring water
- Lake Zurich as an important provider of raw water, especially for communities along the lakeside
- 62% of drinking water stems from the lake
- Applied waste water treatment in this area is technologically on an advanced standard


Economic characteristics

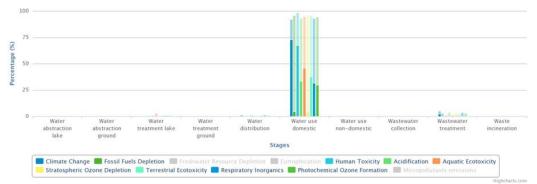
• Canton of Zurich is an economically important part of the country

Identified environmental weaknesses

- Climate change and fossil fuel depletion due to water heating with fossil resources such as gas and oil
- No measures to reduce micropollutants emissions
 - Freshwater resource depletion, due to water use in households


Urban case study in the Canton of Zurich, CH II

Water services and use chain

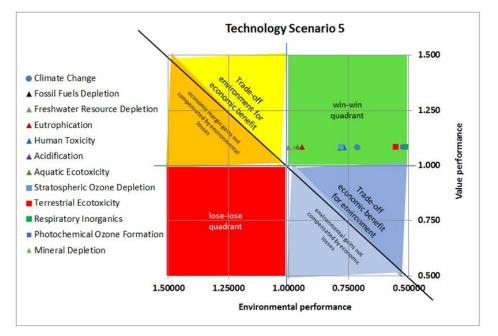

Objective and Baseline

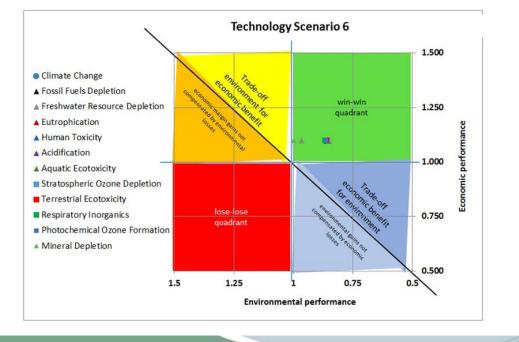
Environmental performance by stages

Main environmental impacts stem from water use stages ...

Example Zurich

... full cost recovery from fees has fostered optimisation in shared water services.

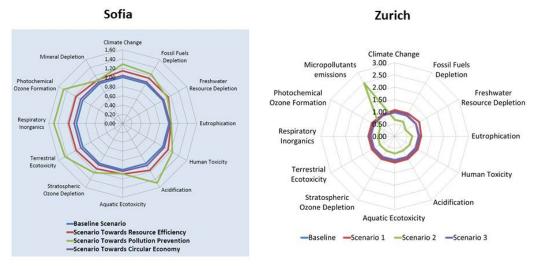

Results for urban case studies


Studied innovative technologies in CS3 and CS4

Individual technologies	CS3 Sofia	CS4 Waedenswil
Stage: Water supply system		
Pressure reduction turbines	CS3 -T1	
Hydro power plant	CS3 -T2	
Smart pumping		CS4-T1
Stage: Water use		
Water saving appliances	CS3 -T4	CS4-T5, CS4-T6
Energy saving appliances	CS3 -T4	CS4-T6
Solar water heating	CS3 -T5	CS4-T7
Water reuse for domestic users		CS4-T4
Drain water heat recovery	CS3 -T6	
Stage: Sewerage system		
Solar sludge drying	CS3 -T3	
Advanced phosphorus recovery		CS4-T3
Micropollutants removal		CS4-T2

EE improvement of solar water heating in Sofia

EE improvements from water and energy saving appliances in Waedenswil



Scenarios and corresponding technologies

Scenario	Technologies CS3	Technologies CS4
Scenario 1: towards Resource Efficiency	Water saving appliancesPressure reduction turbines	 Water saving appliances (cold water) Water saving appliances (warm water) Water reuse and recycling technologies
Scenario 2: towards Pollution Prevention	 Water and energy saving appliances Drain water heat recovery Solar water heating Pressure reduction turbines Hydro power plant (before WTP) 	 Water saving appliances (warm water) Solar water heating Micropollutants removal technologies Smart pumping
Scenario 3: towards Circular economy	 Solar sludge drying Pressure reduction turbines Hydro power plant (before WTP) 	 Water reuse and recycling technologies Advanced Phosphorus recovery

Eco-efficiency performance

Dominant technologies and scenarios preferred, ...

... trade-offs and or non dominant solutions need additional decision criteria.

Eco-Efficiency Indicator:

- Nominator Economic benefit: Economic benefits can be difficult to estimate, but are important to guarantee longterm economic sustainability
- Nominator Costs: To derive accurate costs is in general transparent for public but more difficult for private institutions
- Denominator Environmental impact: Apply proven concepts: i.e. Life Cycle Assessment is the method to account for environmental impacts

Conclusions for urban CS II

- Aggregation of the different environmental impacts: To support decisions in conflicting environmental impact results a weighting might be needed.
- Interpretation challenges: Eco-efficiency indicator depends on economic benefit minus cost margin changes and not on commonly applied costs per reduced impact metrics, i.e. not necessary least cost measures for reduction will be identified for different systems and measures might be eco-efficient in one system but not in another system that creates less margin.
- A facilitator, or a price signal is needed to optimise the system: The existing actors of the value chain will not make system-optimal decision on their own.

- Eco-efficiency (EE) approach is feasible and beneficial for whole system optimisation, especially for asymmetric cost-benefit situations.
- Target decision maker for EE and interpretation of results may be challenging.
- Water utilities (i.e. shared services) tend to be more optimised than water use stages under full cost recovery scheme.
- Shared services (e.g. water utilities) could become champions to facilitate system (EE) optimisation -> e.g. drive optimisation in households or industrial symbiosis programs. -> Additional benefit sharing concepts adjusted to decision makers needed.

Thank you for your attention

For more information, see <u>http://environ.chemeng.ntua.gr/ecowater</u>

Experiences and Challenges in Systemic Eco-efficiency Assessment -Industrial Sector (Palle Lindgaard-Jørgensen)

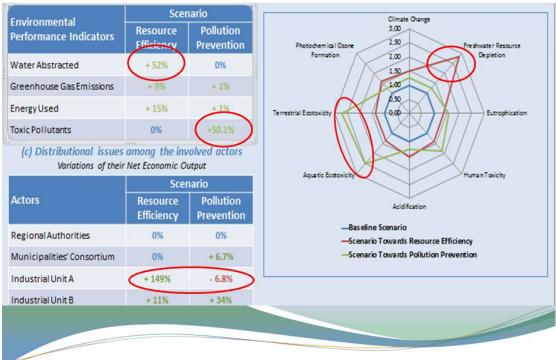
Experiences and challenges in systemic eco-efficiency assessment

Industrial case studies

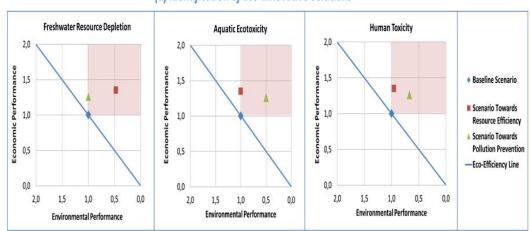
Anna Balzarini, MITA Thanos Angelis-Dimakis, NTUA Michiel Blind, DELTARES Palle Lindgaard-Jørgensen, DHI Åsa Nilsson, Sara Skenhall, IVL

EcoWater Policy Event, 10th December 2014, Brussels

- Case characteristics
- Technologies and scenarios studied
- Eco-efficiency assessment of technologies for textile, dairy, co-generation of electrical and thermal energy and automotive cases
- Conclusions



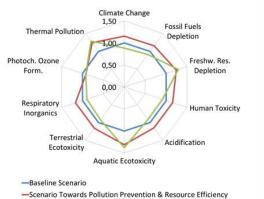
Charac- teristics	Textile	Co-generation of heat	Dairy	Automotive
Location	Italy, Biella	Nether-lands, Amsterdam	Denmark. Holstebro	Sweden, Umeå and Gothenburg
Main product	890 t /100 t chemically /naturally dyed wool	Thermal and electrical energy	17.000 ton Milk powder	30.000 Truck cabins
Main environ- mental issues	Water, toxic chemicals	Thermal pollution, air emissions, resource depletion, aquatic ecotoxicity	Water, climate gas emission	Water pollutants (phosphorus and heavy metals), energy use
Annual water used m3	1.700.000	65.000.000	531.000	405.000
value added €/m³ used	18	1,35	57	71


Industrial innovative technologies are sector specific

Textile	Co- generation	Dairy	Automotive
Smart Pumping Systems	Heat-only boilers	Product and water recovery from CIP	Silane-based corrosion protection
Automatic Dye and Chemical Dispensing	Thermal energy buffer	Cleaning and reuse of condensate	Recycling of process water and chemicals
Low-Liquor-Ratio Jet Dyeing Machines	Micro- Combined Heat-Power	Anaerobic digester	Membrane distillation
Use of Natural Dyes	Additional thermal energy users	Advanced oxidation and UV	
Advanced Oxidation Process	Potable water pre-heating		
Membrane Bioreactor			

Textile

(d) Identification of Eco-innovative Solutions

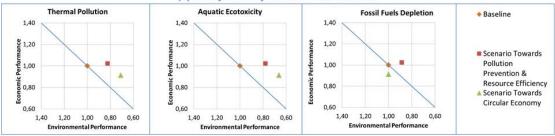

Co-generation of heat

(a) Environmental Performance Assessment

Environmental	Scenario			
Performance Indicators	Resource Efficiency & Pollution Prevention	Circular Economy		
GHG Emissions	-11%	+3%		
Natural Gas Use	-11%	0%		
Thermal Pollution	-18%	-30%		

(c) Distributional issues among the involved actors Variations of their Net Economic Output in the system

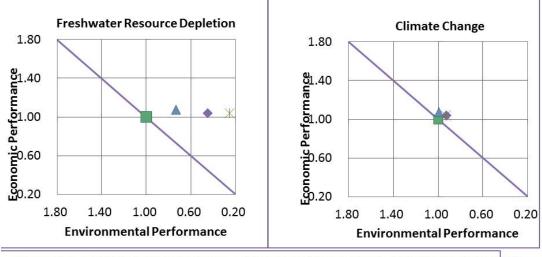
	Scenario			
Actors	Resource Efficiency & Pollution Prevention	Circular Economy		
NUON Producer	+10%	-0,5%		
NUON Retail	+2,3%	+6,2%		
Consumers	0%	-11%		



(b) Eco-efficiency Assessment

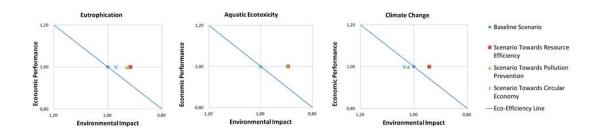
-Scenario Towards Circular Economy

Co-generation of heat


(d) Identification of Eco-innovative Solutions

				Dairy
			\wedge	(b) Eco-efficiency Assessment
(a) Environme	ental Perform	And the second se	sment	Eco-efficiency Climate Change (All indicators) 4.0
Environmental Performance Indicators	Resource Efficiency	Scenario Pollution Prevention	Circular Economy	Photo dremical 0 20ne 4.00 Pomation 2.00 Pormation 2.00 Pomation 2.000 Pomation 2.000 Pomation 2.000 Pomation 2.00
Water Abstracted Tot	+47%	+133%	+316%	Terrestral E cotoccity
Greenhouse Gas Emissions	+2%	+12%	+11%	Aquatic E colosicity Human Texicity
(c) Distributional Variations of the		-		Addition Addition Banario Tourida policion preventiong Banario Tourida policion preventiong Co-officiency Eco-officiency Eco-officiency Dista Change
Actors	Resource Efficiency	Scenario Pollution	Circular	Phote chemical Dizone Eutrophication
Dairy	+10%	+10%	+10%	Terrestrial E dotoxicity
Water <u>utility</u>	-55%	-26%	-75%	
	-42%	-6%	-41%	Aquatic E cotexicity Acidification
and and a				Aquatic E cotexicity Acidi Scation

Dairy


(d) Identification of Eco-innovative Solutions

📕 Baseline Scenario 🔹 Scenario - Towards Pollution Prevention 🔺 Scenario - Towards Ressource Efficiency 📧 Scenario - Towards Circular Economy

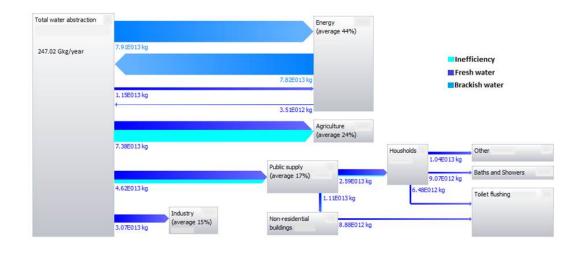
	Scenario	or	
		2	(b) Foo officiancy Accordingt
			(b) Eco-efficiency Assessment
/			
	0.010		Climate Change
		0.0	Photochemical Ozone
-11% RE	-11% PP	CE	Formation 1.10 Depletion
-4.7%	-4.7%	0%	1.05
-11%	-11%	0%	100
-5.7%	2%	3.6%	Terrestrial Ecotoxidity 0,95 Eutrophication
ssues ernon	g the involve	ed actors	
	-		0.45
0	Scenario		Stratospheric Ozone Human Toxicity
Pesource	Pollution	Circular	Depletion
Efficiency	Prevention		
0%	- 12%	- 12%	Aquatic Ecotoxicity Acidification
- 57%	- 57%	0%	Abiotic Resource Depletion
+ 0.3%	+ 0.3%	+ 0.2%	Baseline Scenario Genario Towards Resource Efficiency
- 57%	- 57%	0%	
	-4.7% -11% -5.7% ssue onon Net Economic Pesource Efficiency 0% - 57% + 0.3%	-1.1% -1.5% (-16%) (-22%) -2.8% 3.9% -9.3% -9.3% -11% -11% -11% -11% -4.7% -4.7% -11% -11% -5.7% 2% ssues onong the involve Net Economic Output in the Scenario Pesource Pollution Pficiency Prevention 0% -12% -57% -57% +0.3% +0.3%	-1.1% -1.5% -1.3% (-16%) (-22%) (-19%) -2.8% 3.9% 4.4% -9.3% -9.3% 0% -11% -11% 0% -11% -11% 0% -11% -11% 0% -11% -11% 0% -11% -11% 0% -5.7% 2% 3.6% ssues anong the involved actors Net Economic Output in the system Scenario Prevention Circular Pfficiency Pollution Circular 0% -12% -12% -57% -57% 0% +0.3% +0.3% +0.2%

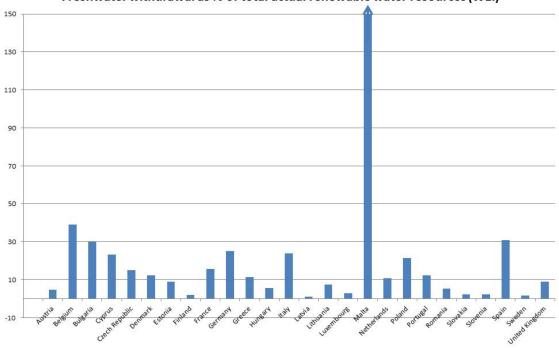
Automotive

Conclusions for industrial CS

- System boundaries- has been expanded in some case studies to include more stages and possibilities for technology scenarios (workshops with stakeholders were instrumental)
- The water use stages were the dominant contributors to both the total value added and the environmental impacts of the industrial water value chains studied
- The technologies which result in an increased Ecoefficiency in the water value chain are sector specific

- Economic performance was primarily improved for the industrieswhile suppliers of water and energy experienced losses.
- Industries understand «business cases and rate of return of investment» -need to be educated on the use of Eco-efficiency and total value added in decision making
- Eco-efficiency assessment may be particular relevant in analyses of circular economy like e.g. industrial symbiosis


Thank you for your attention


For more information, see <u>http://environ.chemeng.ntua.gr/ecowater</u>

Water use in the EU across different sectors (Tomas Rydberg)

Water use in EU

Freshwater withdrawal as % of total actual renewable water resources (WEI)

IVL Swedish Environmental Research Institute Ltd., P.O. Box 210 60, S-100 31 Stockholm, Sweden Phone: +46-8-598 563 00 Fax: +46-8-598 563 90 www.ivl.se